A FACILE PREPARATION OF 2-ALKYLINDOLES POTENTIAL INTERMEDIATES FOR ALKALOIDS

M. Vedachalam, B. Mohan and P.C. Srinivasan*

Department of Organic Chemistry, University of Madras, Guindy Campus, Madras-600 025, India.

<u>Abstract</u>: The bromo compound $\underline{1}$ upon alkylation with active methylene compounds followed by the removal of PhS- and PhSo₂- groups furnished the title compounds.

Only a few methods are reported 1,2,3 for the synthesis of 2-substituted indoles, potential intermediates for a variety of medicinally important alkaloids. Recently we demonstrated 1 as a potential synthon by synthesising isogramine and other 2-aminomethylindoles. Here we report the utility of 1 for the synthesis of 2-alkylindoles bearing functional groups in the side-chain which may serve as precursors for indole alkaloids. Alkylation of 1 with an equivalent of ethyl acetoacetate and diethyl malonate (NaH, THF,5-10°) afforded the corresponding monoalkylated products 2a(mp.102°) and 2b(mp.164°) respectively(80-90%). Under similar conditions alkylation of 1 with benzyl cyanide afforded the expected product 2c(mp.122°, 73%) along with the olefinic compound 3(mp.150°, 10%). Exclusive formation of 2c was observed at -24°.

 $\underline{2a}$, $X = COCH_3$, Y = COOEt; $\underline{2b}$, X = Y = COOEt; $\underline{2c}$, X = Ph, Y = CN Similar by-products were not obtained in the other cases. A plausible mechanism² for the formation of $\underline{3}$ is given below.

2a and 2b were desulfurised with Raney Nickel in boiling acetone(1h) to give 4a and 4b respectively(80-86%). Raney Nickel contaminated with a trace of alkali effected in the case of 2b both desulfurisation and desulfonylation in one step to give $5(mp.62^{\circ}, 61\%)$. Similar reaction did not take place for 2a. Ketonic hydrolysis of 4a with dilute alkali furnished $6(mp.140^{\circ}, 77\%)$. Hydrolysis of 4b and 6(10% NaOH-EtOH) yielded indole-2-propionic acid a and a and a respectively(60-70%). Attempted desulfurisation of a under various

conditions was unsuccessful. Hydrolysis of $\underline{2c}(10\% \text{ NaOH-EtOH})$ furnished the acid $\underline{8}(\text{mp.180-182}^{\bullet}, 73\%)$ which was esterified(H⁺,MeOH,89%, 118°) and desulfurised to give $\underline{9}(\text{mp.140}^{\bullet}, 88\%)$. All our attempts to alkylate $\underline{2b}$ further were unsuccessful. However, second alkylation of $\underline{4b}(\text{NaH,THF,EtI})$ gave $\underline{10}(65\%)$.

The authors thank Prof.S.Swaminathan for encouragement and Department of Science and Technology, Government of India for financial support.

- 1. R.J.Sundberg and H.F.Russel, <u>J. Orq. Chem.</u>, <u>38</u>, 3324 (1973).
- 2. D.Nagarathnam and P.C.Srinivasan, <u>Synthesis</u>, 926 (1982) and references cited therein.
- 3. P.A. Wender and A.W. White, Tetrahedron Lett., 22, 1475 (1981).
- 4. D.Nagarathnam, M.Vedachalam and P.C.Srinivasan, Svnthesis, 156 (1983).
- 5. M.Julia et J.Bagot, Bull. Soc. Chim. France, 1924 (1964).